6th International Workshop on Breathing Pacemakers

Indications and Preoperative Evaluation of Patients

Shafeeq S. Ladha
Director, Fulton ALS and Neuromuscular Center
Ira A. and Mary Lou Fulton Chair in Motor Neuron Diseases
Associate Professor of Neurology
Objectives

- Discuss neurologic control of respiration
- Review phrenic nerve physiology
- Explain diagnostic testing in diaphragm weakness
Motor control

• Generally a two neuron process
 – Cortical upper motor neuron to anterior horn cell
 – Anterior horn cell to muscle

• Interruption anywhere along the pathway can cause weakness
Respiratory muscle control

- Voluntary/Involuntary control
 - Cortical input provides volition
 - Pontine centers
 - Apneustic center (inspir)
 - Pneumotaxic center (expir)
 - Medullary centers
 - VRG
 - Primary driver of breathing
 - Output to the phrenic nerve via spinal integrating center
 - DRG
 - Integrates pontine centers
Phrenic nerve

- Anterior horn cells at C3-5 cervical level
- Solely composed of lower motor neuron axons
Axonal degeneration

A: Neurons, Myelin, Axon, Myocytes
B: Degenerative change
C: Normal state
Normal Phrenic

Injured Phrenic

Paced Injured Phrenic
Pathology Amenable to Pacing

Amenable

• Upper motor neuron lesions
 – High cervical cord injury
• Respiratory center lesions
 – Central sleep apnea
 – Brainstem stroke
 – Pontine tumors
 – MS
• Muscle diseases?
 – Disuse atrophy
 – Pompe disease

Rarely amenable

• Phrenic nerve lesions
 – Brachial neuritis
 – Trauma
 – Head/Neck cancers
• LMN disorders
 – Charcot Marie Tooth
 – ALS
 – Spinal muscular atrophy
Partially Reinnervated Phrenic
Vs.
Injured Phrenic
Partially Reinnervated Phrenic
Phrenic Nerve Conduction Study

• Mimics pacing
 – Stimulate phrenic nerve at neck
 – Record diaphragm muscle response (CMAP)
 – Right and Left performed independently
Phrenic Nerve Conduction Study

![Graph showing phrenic nerve conduction study results]

<table>
<thead>
<tr>
<th>Stimulus site</th>
<th>Beat1 (ms)</th>
<th>Dur (ms)</th>
<th>Amp (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1: Left phrenic nerve</td>
<td>10.5</td>
<td>24.8</td>
<td>0.5</td>
</tr>
<tr>
<td>B2: Right phrenic nerve</td>
<td>7.9</td>
<td>15.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Arch Bronconeumol 2010;46:390-2
Phrenic Nerve Conduction Study

Pros

• Ex-vivo test of pacing
• Objective and measurable
• Easily compares sides

Cons

• Focuses on anterior diaphragm
• Not all neurologists comfortable
• Must time stimulation
• Body habitus
• Postioning
Needle Electromyography

Needle Electromyography

Pros

• Distinguishes muscle from nerve pathology
• Detects ongoing denervation versus reinnervation

Cons

• Painful
• Risk of pneumothorax
• Can only study one side
• Positioning
Video Fluoroscopy

Pros
• Real-time assessment
• Readily available
• Easily compares sides

Cons
• Focuses on anterior diaphragm
• No localization information
• Must rely on radiologist
• Paradoxical movement
• Radiation
Ultrasound

• Emerging as a useful technique
 – Parameters still being developed
 • Thickness
 • Movements
• Can be combined with nerve conduction studies
 – Helpful when body habitus is a problem
Conclusions

• Etiology/pathophysiology of diaphragmatic paralysis critical to pacing decision
 – Diseases of lower motor neurons are generally resistant to pacing
 – Central nervous system diseases are most amenable

• Evaluation can be multimodal and utilize objective measures of diaphragm function
 – NCS, fluoroscopy, ultrasound